

www.onpointcorp.com Page 1 of 7

Introduction to Infrastructure as Code in a Multi-Cloud Environment
From physical servers to virtual machines to spinning up cloud resources, setting up your infrastructure

has always been in the domain of the operations team. While trying to keep the existing environments

running and secure, they are often tasked with manually setting up new or updating environments for the

development staff. The manual process is not only time consuming, but can lend to human error, and a

potential lack of rigor when setting up the environment. Infrastructure as code (IaC) aims to make the

process of creating infrastructure repeatable, trackable and auditable. This process allows system

administrators to define the resources they need to provision with code, ranging from network

configuration, to resources and data storage in your cloud environment. By utilizing code to create the

environment, you can ensure that the infrastructure has been created as specified while providing a

repeatable process to set up exact replicas in all phases of your SDLC (dev, stage, and production). Since

code is used, it can (and should) be checked into a source control repository such as GIT, which will allow

you to quickly see the current state of the environment, as well as provide the ability to fork the

configuration to test changes to the environment. This source-controlled infrastructure code will also

provide a detailed audit trail for any changes to the environment and can also serve as “documentation”

in case your sys admin wins the lottery and decides to move to Hawaii.

How do I start?
While the time to set up the infrastructure as code ecosystem (and training) may not be practical if you

only have a few servers or a small on-prem environment, as you start to transition to a cloud-first

environment, leveraging IaC could benefit your organization. All the major cloud providers have their own

version of infrastructure as code, and use different languages and syntax to render the code:

Provider IAC Supported Language

Google Cloud Platform Deployment Manager YAML

Amazon Web Services Cloud Formation YAML or JSON

Microsoft Azure Azure Resource Manager JSON

If you have a single cloud environment, learning one of the provider specific platforms makes sense, as

the code will be specific to that environment. However, in the multi-cloud world, having to learn multiple

languages and syntax will be an additional burden on the sys admin staff. Thankfully, HashiCorp has

created Terraform, which is an open source tool that allows you to run IaC on all the main cloud providers,

with consistent, readable syntax. This uses HashiCorp’s Command Interface language, which is simple and

very human readable (especially for anyone that has spent hours debugging JSON for that missing

bracket). Terraform takes declarative configuration files and the concept of “providers” to interact with

the various cloud systems via API to create the desired resources. Terraform also allows you to map

resource dependencies so you can understand how a minor infrastructure change could have a potential

cascading effect across your environment. Utilizing the Terraform scripts will also allow you to ensure

that the same environmental configurations are in dev, test, staging and production, to help promote your

application through the process quicker, without having to hear “it worked in dev!”.

https://cloud.google.com/deployment-manager/docs/
https://aws.amazon.com/cloudformation/
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-overview
https://www.terraform.io/

www.onpointcorp.com Page 2 of 7

What does it look like?
As mentioned above, Terraform uses HCI syntax to create .TF files. Terraform is run on a folder in your

file structure, and all files with the .TF extension are analyzed, dependencies are resolved, and a build

plan is created for that specific state. You can separate resources into different Terraform files, so that

you can re-use parts (e.g. build resources on another environment that already has a network defined).

The examples below show TF files across the main three providers (Amazon, Google, and Microsoft) to

create a micro compute resources (VM) with Ubuntu OS.

The red boxes signify the provider declaration. The green boxes define the resource type, and the

yellow boxes define the machine type and OS image. As you can see, with a few lines of code, you can

quickly and repeatably stand up resources in your cloud environment. There are also many other

parameters you can add to each resource listing to customize it as necessary (such as disk size, service

accounts, network interfaces, etc.). Hashicorp has guides for AWS, GCP, and Azure, that provide

information and examples for each provider.

How do I run it?
If you are logged into your cloud environment, most services provide a cloud shell interface that already

has Terraform installed (see example below from Google Cloud Platform).

https://www.terraform.io/docs/providers/aws/index.html
https://www.terraform.io/docs/providers/google/
https://www.terraform.io/docs/providers/azurerm

www.onpointcorp.com Page 3 of 7

After you navigate to the directory where your Terraform files are, the fist step is to run terraform init.

This command scans the code in that folder to understand what to build, what the dependencies are,

and to download the plugins for the provider.

The next step is to run terraform plan, which is a dry-run to show you what changes would be made to

your infrastructure. Terraform also checks against a state file (terraform.tfstate) that it creates or updates

every time it is run to compare the desired state to the as-is or known state. If the infrastructure does

not match the desired state then Terraform will compute the difference, and suggest bringing it back in

line by reverting the manual changes (e.g. someone adds an unapproved firewall rule, or changes a

resource tag).

www.onpointcorp.com Page 4 of 7

www.onpointcorp.com Page 5 of 7

The output of the terraform plan command above delineates the resources and the configurations that

will be created when Terraform runs. The output above shows that a new Google compute instance will

be created. This is a very useful tool to validate changes to your environment before they are made and

potentially cause unintended consequences. If the plan looks good, the next step is to run terraform apply

to invoke the changes by calling the provider APIs.

www.onpointcorp.com Page 6 of 7

The terraform apply command will re-iterate the configuration described in the plan step and will also ask

for a confirmation that you want to take these actions. After a few seconds, the resource is provisioned,

and you can verify in your cloud console

To remove resources or configurations, you can run the terraform destroy command. The output will

show the changes in settings, and similarly to the apply command, this will require confirmation before

the resources are removed.

www.onpointcorp.com Page 7 of 7

About OnPoint
OnPoint Consulting, Inc. (OnPoint) delivers secure IT infrastructure, enterprise systems, cybersecurity and
program management solutions for the U.S. federal government. Our specialized strategy, cyber and
technology capabilities are changing the way our clients improve performance, effectively deliver results
and manage risk. OnPoint holds ISO 9001:2015, ISO 20000-1:2011, ISO 27001:2013 certifications and a
CMMI Maturity Level 3 rating.

OnPoint is a part of the Publicis Sapient platform, with access to industry leading AI tools and teams.
Contact us at innovation@onpointcorp.com or visit onpointcorp.com to learn more about us and our
services.

mailto:innovation@onpointcorp.com
http://www.onpointcorp.com/

