OI':I__ point

Introduction to Infrastructure as Code in a Multi-Cloud Environment

From physical servers to virtual machines to spinning up cloud resources, setting up your infrastructure
has always been in the domain of the operations team. While trying to keep the existing environments
running and secure, they are often tasked with manually setting up new or updating environments for the
development staff. The manual process is not only time consuming, but can lend to human error, and a
potential lack of rigor when setting up the environment. Infrastructure as code (laC) aims to make the
process of creating infrastructure repeatable, trackable and auditable. This process allows system
administrators to define the resources they need to provision with code, ranging from network
configuration, to resources and data storage in your cloud environment. By utilizing code to create the
environment, you can ensure that the infrastructure has been created as specified while providing a
repeatable process to set up exact replicas in all phases of your SDLC (dev, stage, and production). Since
code is used, it can (and should) be checked into a source control repository such as GIT, which will allow
you to quickly see the current state of the environment, as well as provide the ability to fork the
configuration to test changes to the environment. This source-controlled infrastructure code will also
provide a detailed audit trail for any changes to the environment and can also serve as “documentation”
in case your sys admin wins the lottery and decides to move to Hawaii.

How do | start?

While the time to set up the infrastructure as code ecosystem (and training) may not be practical if you
only have a few servers or a small on-prem environment, as you start to transition to a cloud-first
environment, leveraging laC could benefit your organization. All the major cloud providers have their own
version of infrastructure as code, and use different languages and syntax to render the code:

Provider IAC Supported Language ‘
Google Cloud Platform Deployment Manager YAML

Amazon Web Services Cloud Formation YAML or JSON

Microsoft Azure Azure Resource Manager JSON

If you have a single cloud environment, learning one of the provider specific platforms makes sense, as
the code will be specific to that environment. However, in the multi-cloud world, having to learn multiple
languages and syntax will be an additional burden on the sys admin staff. Thankfully, HashiCorp has
created Terraform, which is an open source tool that allows you to run laC on all the main cloud providers,
with consistent, readable syntax. This uses HashiCorp’s Command Interface language, which is simple and
very human readable (especially for anyone that has spent hours debugging JSON for that missing
bracket). Terraform takes declarative configuration files and the concept of “providers” to interact with
the various cloud systems via API to create the desired resources. Terraform also allows you to map
resource dependencies so you can understand how a minor infrastructure change could have a potential
cascading effect across your environment. Utilizing the Terraform scripts will also allow you to ensure
that the same environmental configurations are in dev, test, staging and production, to help promote your
application through the process quicker, without having to hear “it worked in dev!”.

www.onpointcorp.com Page 1 of 7

https://cloud.google.com/deployment-manager/docs/
https://aws.amazon.com/cloudformation/
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-overview
https://www.terraform.io/

D point

What does it look like?

As mentioned above, Terraform uses HCI syntax to create .TF files. Terraform is run on a folder in your
file structure, and all files with the .TF extension are analyzed, dependencies are resolved, and a build
plan is created for that specific state. You can separate resources into different Terraform files, so that
you can re-use parts (e.g. build resources on another environment that already has a network defined).
The examples below show TF files across the main three providers (Amazon, Google, and Microsoft) to
create a micro compute resources (VM) with Ubuntu OS.

1 = (provider "aws"){ 1 {provider “azurern]{
2 region = "us-west-2" 2 version = "=1.28.8
ER 300}
" - " " - 4

4 PESOL_"‘CE aus 1n5timc?] web” { . 5 [r‘esour‘ce "azur‘er‘m_\fir‘tual_machine"]"1-Jeb" {
5 ami = "ami-Bdedle6dcfo3dd25e 6 name ~ "Helloworld_Azure"
6 instance_type = "t2.micro” 7 location - "eastus”
7 8 resource_group_name = "[define wvalue]"
2 tags = { g network_interface_ids = ["[define values]™]
9 Name = “"Hellobiorld_Aws" 10 vm_size = "Standard Bls
18 1 11 storage_os_disk {
J.I 12 name = "myOsDisk™

¥ 13 caching = "Readirite”
12 14 create_option = "FromImage"
. provider "google"|(15 managed_disk_type = "Premium_LRS"

— 5
2 region = "us-centrall” l: ¥ .
3 3 17 storage_image_reference {
4 18 publisher = "Canonical”
19 offer = "UbuntuServer”

5 {'esowce "google_compute_irstarce'] "default” { 20 sku . = "16.84.8-LT5"
6 name = "helloworld_gcy” 21 version = "latest
7 machine_type = "fl-micro” 22 ¥
8 zone = "us-centrall-a" 23 tags = {
g 24 environment = "HelleWorld Azure"
1@ boot_disk { 25 b
11 initialize params { 26 ¥
12 image = "ubuntu-os-cloud/ubuntu-1984"
13 3
14 1
15}

The red boxes signify the provider declaration. The green boxes define the resource type, and the
yellow boxes define the machine type and OS image. As you can see, with a few lines of code, you can
quickly and repeatably stand up resources in your cloud environment. There are also many other
parameters you can add to each resource listing to customize it as necessary (such as disk size, service
accounts, network interfaces, etc.). Hashicorp has guides for AWS, GCP, and Azure, that provide
information and examples for each provider.

How do | run it?
If you are logged into your cloud environment, most services provide a cloud shell interface that already
has Terraform installed (see example below from Google Cloud Platform).

www.onpointcorp.com Page 2 of 7

https://www.terraform.io/docs/providers/aws/index.html
https://www.terraform.io/docs/providers/google/
https://www.terraform.io/docs/providers/azurerm

Welcome to Cloud Shell! Type "help™ to get started.

Your Cloud Platform project in this session is set to
Use “gcloud config set project [FROJECT ID]” to change tﬂ a dlfferent proj&ct.

} [terraform ——version|
Terraform v0.12.2

After you navigate to the directory where your Terraform files are, the fist step is to run terraform init.
This command scans the code in that folder to understand what to build, what the dependencies are,
and to download the plugins for the provider.

'$ [cerratorm init

Initializing the backend...

Initializing provider plugins. ..
— Checking for available provider plugins...
— Downloading plugin for provider "google" (terraform—providers/google) 2.10.0...

The following providers do not have any version constraints in configuration,
3o the latest version was installed.

To prevent automatic upgrades to new major versions that may contain breaking
changes, it is recommended to add version = "..." constraints to the
corresponding provider blocks in configuration, with the constraint strings

suggested below.

* provider.google: wversion = "-> 2_.10"

The next step is to run terraform plan, which is a dry-run to show you what changes would be made to
your infrastructure. Terraform also checks against a state file (terraform.tfstate) that it creates or updates
every time it is run to compare the desired state to the as-is or known state. If the infrastructure does
not match the desired state then Terraform will compute the difference, and suggest bringing it back in
line by reverting the manual changes (e.g. someone adds an unapproved firewall rule, or changes a
resource tag).

www.onpointcorp.com Page 3 of 7

3
Befreshing Terraform =state in-memory prior to plan...
The refreshed state will be used to calculate this plan, but will not be
persisted to local or remote state storage.

An execution plan has been generated and is shown below.
Resource actions are indicated with the following symbols:
create

Terraform will perform the following actions:

google compute instance.defanlt will be created

TESOUTCE "QOOQlE CcompUte InSCtance defau
can ip forward = false
cpu platform = (known after apply)
deletion protection false
guest accelerator {known after apply)
id {(known after apply)
instance id {lnown after apply)
lebel fingerprint {known after apply)
machine type "f1-micro™
metadata fingerprint = (known after apply)
name "helloworld-gcp™
project
gself link {known after apply)
tags fingerprint {(known after apply)
Zone = "ps—centrall-a™

boot disk {
auto_delete = true
device name = (known after apply)
disk encrypticon key sha256 {lmown after apply)
source = (known after apply)

initialize params f{
image = "ubuntu-os-—cloud/ubuntu-1904"
size = (known after apply)
type = {(known after apply)

network interface {
address (known after apply)
name (known after apply)
network "defanlt"™
network ip (known after apply)
subnetwork (known after apply)
subnetwork project (known after apply)

access config {
assigned nat ip = (known apply)
nat ip { known apply)

network tier {known apply)

scheduling {
autcmatic restart = {known
{ known
{ known

node affinities {
key = [(known after apply)
operator (known after apply)
wvalues (known after apply)

Plan: 1 to add, 0 to change, 0 to destroy.

The output of the terraform plan command above delineates the resources and the configurations that
will be created when Terraform runs. The output above shows that a new Google compute instance will
be created. This is a very useful tool to validate changes to your environment before they are made and
potentially cause unintended consequences. If the plan looks good, the next step is to run terraform apply
to invoke the changes by calling the provider APIs.

BAn execution plan has been generated and is shown below.
Resource actions are indicated with the following symbols:

create

Terraform will perform the following actions:

google compute instance.default will be created
resource "google compute instance"™ "default™ {

can_ip forward
cpu platform

deletion protection

gue SE_BCCEJ.EEEEDI'

id
instance_id

label fingerprint

machine type

metadata fingerprint

name
project
gelf link

tags fingerprint

Zone

false

{known after apply)
false

(known after apply)
{knowmn after apply)
{known after apply)
{known after apply)
"fl-micro™

(known after apply)

= "helloworld-gcp™

{known after apply)
{(knowmn after apply)
"us—centrall-a™

4 terraform apply

boot_disk {

}

auto delete
device name

source

initialize params {

= true

(kmown after apply)
disk encryption key shalSé (known after apply)
= (knowm after apply)

image = "ubuntu-os-cloud/ubuntu-1904"
gize = (known after apply)
type = (known after apply)

network interface {
address = (known after apply)
name = (known after apply)
network "default™

network ip (known after apply)
subnetwork (known after apply)
subnetwork project = (known after apply)

}

access config {
assigned nat :
nat ip

network tier

scheduling {

automatic restart
on_host maintenance
preemptible

node affinities {
iey = (known
operator (known
wvalues = (known

Plan: 1 to add, 0 to change, 0 to

{known after apply)
{known after apply)

= {known after apply)

{known after apply)
{known after apply)
{known after apply)

after apply)
after apply)
after apply)

destroy.

Do you want to perform these actions?
Terraform will perform the actions described
Only 'yes' will be accepted to approve.

Enter a value: yes

google compute instance.defamlt:
google compute instance.defamlt:
google compute instance.defamlt:
google compute instance.defamlt:
google compute instance.defamlt:

Creating. ..

5till creating... [10s elapsed]
S5till creating... [20= elapsed]
Still creating... [30s elapsed]
Creation complete after 37s [id=helloworld-gcp]

www.onpointcorp.com

Page 5 of 7

The terraform apply command will re-iterate the configuration described in the plan step and will also ask
for a confirmation that you want to take these actions. After a few seconds, the resource is provisioned,
and you can verify in your cloud console

VI inS[anCES ﬂ CREATE INSTANCE & IMPORT VM G REFRESH
Status : Running X Columns -
Name ~ Zone Recommendation In use by Internal IP External IP Connect
& nhelloworld-gcp us-centrall-a SSH = :

To remove resources or configurations, you can run the terraform destroy command. The output will
show the changes in settings, and similarly to the apply command, this will require confirmation before
the resources are removed.

% |terraform destro

google compute instance.defanlt: Refreshing state... [id=helloworld-gcp]

An execution plan has been generated and is shown below.
Resource actions are indicated with the following symbols:
destroy

Terraform will perform the following actions:

google compute instance.defanlt will be

resource "google compute instance"™ "default” {
can ip forward = false
cpu platform = "Intel Haswell™
deletion protection = false
guest accelerator = [1
id = "helloworld-gcp™
instance id ™3351499546057056934™
label fingerprint = "42WNmSpBErSM="
labels i}
machine type "fl-micro™
metadata i}
metadata fingerprint "p6ljIviSjdag="
name = "helloworld—g

www.onpointcorp.com Page 6 of 7

Plan: 0 to add, 0 to change,

1 to destroy.

Do vou really want to destroy all resonrces?

Terraform will destroy all your managed infrastructure,

There iz no undo. Only 'ves" will be accepted to confirm.

Enter a valuoe: yes

geogle compute instance.defamlt:
google compute instance.defamlt:
google compute instance.defamlt:
goeogle compute instance.defamlt:
geogle compute instance.defamlt:
google compute instance.defamlt:
geogle compute instance.defaolt:
geogle compute instance.defamlt:
google compute instance.defamlt:
google compute instance.defamlt:
goeogle compute instance.defamlt:
geogle compute instance.defamlt:
google compute instance.defamlt:
geogle compute instance.defanlt:

Destroying. ..
5till
Still
Still
Still
5till
Still
Still
5till
Still
Still
Still
5till

destroying. .
destroying. .
destroying. .
destroying. .
destroying. .
destroying. .
destroying. .
destroying. .
destroying. .
destroying. .
destroying. .
destroying. .

[id=helloworld-gop]

[id=helloworld—gcp,
[id=helloworld—gcp,
[id=helloworld—-gcp,
[id=helloworld-gcp,
[id=helloworld—gcp,
[id=helloworld—gcp,
[id=helloworld-gcp,
[id=helloworld—gcp,
[id=helloworld—gcp,
[id=helloworld—-gcp,
[id=helloworld-gcp,
[id=helloworld—gcp,

Destruction complete after ?m7s

About OnPoint

as shown above.

10=
20s
30=
40=
S0s

elapsed]
elapsed]
elap=sed]
elapsed]
elapsed]

1ml=z elapsed]

Iml 0=
1m20s
1m30=
1md0s
1m50=

elap=ed]
elap=sed]
elap=sed]
elap=ed]
elap=sed]

2ml=z elapsed]

OnPoint Consulting, Inc. (OnPoint) delivers secure IT infrastructure, enterprise systems, cybersecurity and
program management solutions for the U.S. federal government. Our specialized strategy, cyber and
technology capabilities are changing the way our clients improve performance, effectively deliver results
and manage risk. OnPoint holds ISO 9001:2015, ISO 20000-1:2011, ISO 27001:2013 certifications and a

CMMI Maturity Level 3 rating.

OnPoint is a part of the Publicis Sapient platform, with access to industry leading Al tools and teams.
Contact us at innovation@onpointcorp.com or visit onpointcorp.com to learn more about us and our

services.

www.onpointcorp.com

Page 7 of 7

mailto:innovation@onpointcorp.com
http://www.onpointcorp.com/

