

www.onpointcorp.com Page 1 of 5

Creating Your First Containerized Application
As industry continues to progress towards lightweight scalable workloads, containers are becoming more
common replacement for virtual machines. In a previous post, we have described how containers in
conjunction with Kubernetes can help manage the cluster orchestration, and in this guide, we will provide
instructions on how to build, run, and manage a docker container to expose a simple application.

Set Up a Simple Application
While most applications are generally more complex, a simple JavaScript Tracker will be used for demo
purposes. It consists of an HTML index page (including external links to Bootstrap, jQuery, and chance.js),
and a custom java script file. The files are packaged together in a working directory labelled “html”.

Docker Software
To create a container, the docker
software will need to be installed on the
environment. For this case, the Docker
desktop app (on Windows) is being used
with Linux containers. This could also be
run on any other environment where you
could download docker in either the
Linux or Windows environment (this
guide references a Linux container, but
information about Windows containers
can be found here.)

To verify that docker in installed and
running, type docker version in your
terminal session

Create a Dockerfile
The Dockerfile is a text file which contains all the commands necessary to build a docker image. The
commands cover a wide variety of user defined steps and runs sequentially. In this case, the Dockerfile is
configured as:

FROM httpd:2.4

COPY ./html/ /usr/local/apache2/htdocs/

EXPOSE 80

This is a very simple Dockerfile, and we will break down the components:

FROM – The FROM command specifies a pre-defined image pulled from the Docker Hub. In this case it is
the Apache HTTP Web server (httpd), with tag (version) 2.4.

COPY – the COPY command will copy the directory where the application is locally housed to the working
directory for the Apache web server

www.onpointcorp.com Page 2 of 5

EXPOSE – The EXPOSE command informs Docker that the container listens on the specified port (80 in this
case) at runtime.

There are many more build commands available based on the needs of the application, and they can be
found here.

Build the Docker Image
Navigate to the working
directory where the source
application files and Dockerfile
are located.

The following command can then be run to build the docker image:

docker image build -t apache-test:0.1 .

The “-t” option signifies the “name:tag” format; in this case the name is “apache-test” and the “tag” is
0.1. If no tag is defined, it will default to “latest”. Assigning actual tag values will help keep track of
versions and revisions. There are other build options available as well. The trailing “.” signifies that the
Dockerfile is located in the current directory.

The output of the build command will look like the following:

Step 1 - Pull the Apache Web server image from Docker Hub and extract it.

Step 2 - Copy the files to the working directory

Step 3 - Expose port 80

www.onpointcorp.com Page 3 of 5

Verify the images by running:

Docker images

This shows that the Apache Web server image was pulled down, and the new apache-test image was
created.

[Optional] Store image in container registry (GCR, Docker Hub, AWS, Azure)
For development purposes, the image created can be stored on your local machine. However, if this
needs to be shared (to be used by other team members, shared across environments, or promoted
through the dev/test/prod lifecycle), the image can be stored in a central repository such as Docker Hub,
Google Container Registry, AWS, or Azure. For this case, the image will be stored in Google Container
Registry (gcr.io) via the Google Cloud SDK Shell.

1. Authenticate into the registry

gcloud auth configure-docker

2. Tag the image with the registry name:

docker tag apache-test:0.1 gcr.io/<project ID>/apache-test:0.1

3. Push the image to the registry:

docker push gcr.io/<project ID>/apache-test:0.1

4. To pull the image back down to another environment, re-authenticate, and then run:

docker pull gcr.io/<project ID>/apache-test:0.1

www.onpointcorp.com Page 4 of 5

Run the Image
Now that the image is built, it can be run inside an isolated container. This container has its own file
system, networking, and process tree separate from the host. The command to run the container:

docker container run -d -p 80:80 apache-test:0.1

Breaking down the command:

-d – signifies to run in detached mode

-p – publishes the containers ports to the host (in this case port 80 on the container maps to port 80 on
the host)

After running the command, the docker container ls command will show the available containers:

Navigating to “Localhost:80” on your browser will bring up the application running in the container!
NOTE: this container has not been exposed to the internet, so only internal requests (localhost, cURL,
Wget, etc.) will work to access the app.

To stop the container:

Docker stop <container ID>

Update the Image
As development progresses, if there are changes to the application, the process to update the image is:

1. Build new image version

docker image build -t apache-test:0.2 .

NOTE: since the Apache image was the same as before, docker used a cached version, and only updated
the application files

www.onpointcorp.com Page 5 of 5

2. Run docker image ls command to verify images

3. To run the new image in a container, specify the newer tag:

docker container run -d -p 80:80 apache-test:0.2

About OnPoint
OnPoint Consulting, Inc. (OnPoint) delivers secure IT infrastructure, enterprise systems, cybersecurity and
program management solutions for the U.S. federal government. Our specialized strategy, cyber and
technology capabilities are changing the way our clients improve performance, effectively deliver results
and manage risk. OnPoint holds ISO 9001:2015, ISO 20000-1:2011, ISO 27001:2013 certifications and a
CMMI Maturity Level 3 rating.

OnPoint is a part of the Publicis Sapient platform, with access to industry leading AI tools and teams.
Contact us at innovation@onpointcorp.com or visit onpointcorp.com to learn more about us and our
services.

